JINJA JOINT EXAINATION BOARD

CHEMISTRY PAPER TWO, 545/2 PROPOSSED MARKING GUIDE 2017

QTNS			MADKO
1.(a)	(i)	Fractional distillation (of liquid air)	MARKS ½
1.(4)			
	(ii)	At low temperature, they would form solid which can block the pipes	11/2
	(ii)	Difference in boiling points	1/2
₂₀ =	(iv)	-Refining petroleum,	1/2
(b)		-Distillation of ethanol or equivalent	1/2
		Burns with a brick red flame forming a white solid	1
			4½ marks
2.(a)	(i)	A normal salt is a compound formed when all the ionizable hydrogen of an acid is	
		replaced by a metal or ammonium ion	1
	(ii)	-Softening of hard water 🗸	
		-In fire extinguisher 🗸	1
(b)	(i)	Red litmus turns to blue	1/2
	(ii)	Sodium hydroxide is a strong base which ionizes to produce more hydroxide	
		ions than the weak carbonic which produces few hydrogen ions; the solution has	21/2
		excess hydroxide ions.	
			4½marks
3.(a)	4	Moles of sodium hydroxide = $\frac{20 \times 2}{1000}$ = 0.04 moles	
		Moles of barium hydroxide formed = $\frac{1}{2} \times 0.04 = 0.02$ moles	3½
		Molecular mass of Ba(OH) ₂ = $137 + 2(16) + 1$ = 171gm	
		Mass of Ba(OH) ₂ = $171 \times 0.02 = 3.42 \text{gm}$	
(b)		$Ba(OH)_2(s)$ \longrightarrow $BaO(s) + H_2O(g)$	11/2
(0)			5 marks
	<u>. 1 //s</u>	Sample X contains Magnesium sulphate or equivalent	1/2
4. (a	(i)	Sample X contains Magnesium sulphate of equivalent Magnesium sulphate does not decompose, no change in volume of soap solution	1
		Calcium hydrogen carbonate or equivalent	1/2
	(ii)	Sample Z contains Calcium hydrogen eurostate of 4 Boiling decomposes it, Ca ²⁺ ions are removed leading to decrease in volume of	1
		soap solution	1
(b)	- Addition of sodium carbonate	1
		- Distillation X	Page 1
1			rage 1

(c)		It does not contain minerals	TIM
		It does not prevent lead poisoning	
5()		1	1
5.(a)	(i)	Concentrated hydrochloric acid	5 marks
	(ii)	An oxidizing agent	1/2
	(iii)	$MnO_2(s) + 4HCl(aq)$ \longrightarrow $MnCl_2(aq) + Cl_2(g) + 2H_2O(l)$	
(b)	(i)	The colourless solution turns to brown	11/2
	(ii)	Chlorine oxidizes the iodide ions to iodine	1
(c)		to roune	1
		The outermost energy level contains seven electrons	
6 (-)	(")		1/2
6.(a)	(i)	-Blue/green solution turns to colourless 🗸	5 marks
	ļ ,	-Brown solid deposited /	1
(1)	(ii)	$Zn(s) + Cu^{2+}(aq)$ $Zn^{2+}(aq) + Cu(s)$	
(b)	(i)	$Vass of solution = 40 \times 1 = 40 \text{gm}$	11/2
		Change in temperature = $33 - 24 = 9^{\circ}C$	
		Heat change. $\Delta H = 40 \times 4.2 \times 9 = 1,512J$	11/2
	(ii)		
		Moles of Cu^{2+} ions = $\frac{40 \times 0.15}{1000}$ = 0.006 moles	
		0.006 moles of Cu ²⁺ ions react to produce 1,512 J of heat	
		1 mole of Cu ²⁺ ions will react to produce $\frac{1,512 \times 1}{0.006} = 252,000$ J	2
		Heat of reaction is – 252KJ/mol	
7.(a)		Heat and steam /	6 marks
	(ii)	$Mg(s) + H_2O(g)$ \longrightarrow $MgO(s) + H_2(g)$	1
(b)		The white powder dissolves to form a cloudy solution	11/2
(c)		Mg(OH) ₂ (an) + 2HNO (an)	1
		$Mg(OH)_2(aq) + 2HNO_3(aq)$ $\longrightarrow Mg(NO_3)_2(aq) + 2H_2O(l)$	11/2
8.(a)	(i)	An allotrope is one of the different forms of an element but in the same physical state	5 marks
		state state	
			1

i i		X X	
	(ii)	Graphite, Diamond	1
(b)	(i)	Graphite – soft and slippery, conducts electricity	1 1/2
		Diamond – very hard, sparkles, does not conduct electricity	1/2
		nard, sparkles, does not conduct electricity	/2
	(ii)	Graphite – for making pencil lead, dry lubricant, making electrodes.	1/2
		Diamond – for making jewellery, making drill heads(bits)	1/2
		- making glass cutters	
(c)	(i)	Lamp black X	1/2
	(ii)	Animal charcoal	1/2
			5 marks
9.(a)	(i)	Water of crystallization is the definite amount of water with which some	1
6		substances chemically combine when they form crystalls in solution.	
	(ii)	Colour of crystalls 🗡	1
		Texture or shape and size 🗸	
(b)	(i)	Na C O H ₂ O	
v.		Number of moles $\frac{16.1}{23} = 0.7$, $\frac{4.2}{12} = 0.35$, $\frac{16.8}{16} = 1.05$, $\frac{62.9}{18} = 3.49$	-y-
		Divide by the smallest $\frac{0.7}{0.35} = 2$, $\frac{0.35}{0.35} = 1$, $\frac{1.05}{0.35} = 3$, $\frac{3.49}{0.35} = 9.97$	2
	-	Mole ratio 2 1 3 10 🗸	
		Formular is Na ₂ CO ₃ .10H ₂ O	
	(ii)	The white crystalls turns to a white powder because it has lost water of	
		crystallization(efflorescent)	1
			5 marks
10.(a)	(i) (ii	P = salt bridge \(\sqrt{Q} = \text{Copper} \(\sqrt{\sqrt{Q}} \)	1/2
	(iii)	R = Iron(II) sulphate or equivalent	1/ ₂ 1/ ₂
(b)	(i)	To complete the circuit or equivalent	
			1/2
(0)	(ii)	Potassium chloride or equivalent	1/2
(c)		Check on the diagram 📈	1/2
(d)		Cu ²⁺ (aq) + 2e — Cu(s) Vx * Copper is the positive electrode.	11/2

Section A total marks = 50

41/2 marl

QTNS		SECTION B	
11.(a)		Rate of a chemical reaction is the	MARK
(b)	(i)	Rate of a chemical reaction is the amount of product formed or reactants used up per unit time Rate of a reaction increases with increase in temperature. At high temperature more particles gain kinetic energy and move for the little of the control of the little of the control of the little of t	1
	(ii)	more particles gain kinetic energy and move faster leading to more frequent collision hence increase in the rate of a chemical reaction The smaller the size of the particle, the higher the surface area which provides greater chances for more particles in the reaction and the faster the reaction rate.	2
	(iii)	When the concentration of the reactant is high, the reacting particles are close to one another and the frequency of collision is high leading to increase in the rate of a chemical reaction	2
(c)	(i)	See the graph	31/2
	(ii)	Excess acid is used to react with all the zinc powder	1
	(iii)	At 2 minutes $\frac{70-40}{3.2-0.6} = \frac{30}{2.6} = 11.54 \text{cm}^3 \text{min}^{-1}$	1
	_	At 5 minutes $\frac{82-71}{7.0-3.5} = \frac{11}{3.5} = 3.14 \text{cm}^3 \text{min}^{-1}$ The rate at 2 minutes is high 44 by the rate of 5	1
	(iv)	The rate at 2 minutes is higher than the rate at 5 minutes because at 2 minutes the concentration of the reactants are still high	11/2
		X X	15 marks
12(a).	(i)	To dilute nitric acid in a beaker, calcium carbonate is added little at a time while stirring until it is added in excess and when effervescence stops. Calcium nitrate	3
		forms in the solution as in the equation $CaCO_3(s) + 2HNO_3 (aq) Ca(NO_3)_2 (aq) + H_2O(l) + CO_2(g)$ Excess calcium carbonate is filtered off; the filtrate is heated to saturation point	1 1/2
	<i>(</i>)	and allowed to cool to allow crystalls to form. The crystalls filtered off, washed	31/2
	(ii)	with little water and dried The solid melts reddish brown fumes given off a white powder/solid residue remains.	2
	(i)	2Ca(NO ₃) ₂ (s) 2CaO(s) + 4NO ₂ (g) + O ₂ (g) White precipitate, insoluble in excess	1½ 1
(b).			
	(ii)	Molecular mass of $Ca(OH)_2 = 40 + 2(1+16) = 74 gm$	=
		Moles of $Ca(OH)_2 = \frac{1.85}{74} = 0.025$ moles, moles of $Ca(NO_3)_2 = 0.025$ moles.	3
		50cm ³ contains 0.025 moles	
		$1000 \text{cm}^3 \text{ will contain } \frac{0.025 \times 1000}{50} = 0.5 \text{M}$	
			15 marl

a)	(i)	The yield of ammonia will increase,	
	(ii)	to reduce from 4 volumes to 2 volumes. The yield of ammonia will increase The reaction of nitrogen and book.	2
o)	(i)	The reaction of nitrogen and hydrogen to form ammonia is exothermic, it Catalyst	2
c)	(ii)	Platinum X	1/2
		$4NH_3(g) + 5O_2(g)$ \rightarrow $4NO(g) + 6H_2O(l)$	/2
		$2NO(g) + O_2(g)$ \longrightarrow $2NO_2(g)$	41/2
d)	(i)	$4NO_2(g) + O_2(g) + 2H_2O(l) \longrightarrow 4HNO_3(aq)$	172
	(ii)	A fertilizer is a chemical substance applied to soil to provide plant nutrients.	1
	(11)	Ammonium nitrate dissolves in water forming ammonium hydroxide, a weak alkali and nitric acid which is a strong acid. Nitric acid ionizes to produce more hydrogen ions than the few hydroxide ions from ammonium hydroxide making the soil acidic.	3½
		Calcium oxide being a base is added to neutralize (react with) the acid in the soil.	41
		CaO(s) + 2HNO3(aq)	1
		΄ .	15 marks
a) b)		Sodium chloride, NaCl Sodium is extracted by electrolysis of fused/molten solution of sodium chloride	1
	1	to which calcium chloride is added to lower the melting point of sodium chloride in the Down cell using iron (steel) as the cathode and graphite as the anode. Sodium ions are reduced to sodium at the cathode.	5½
		Na ⁺ (l) + e Na(l) Na(l) Sodium is then collected and stored under dry nitrogen	
c)	(i)	Sodium burns with a bright yellow flame forming a white solid. 4Na(s) + O ₂ (g) 2Na ₂ O(s) Melts into a silvery ball that moves (darts) on top of water with a hissing sound.	2½
	(ii)	$2Na(s) + 2H_2O(1) \longrightarrow 2NaOH(aq) + H_2(g) \checkmark \checkmark$	31/2
	(iii)	Burns in chlorine with a bright yellow flame forming white fumes (solid) 2Na(s) + Cl ₂ (g) 2NaCl(s)	21/2

15 marks

END